Unit 6 Belturbet Business Park Creeny Belturbet Co. Cavan H14AY94

T: +353 49 9522236 E: info@alantraynor.com W: www.alantraynor.com 2nd Floor 67-70 Meath St Dublin 8 D08XY53

T: +353 1 6750850 E: dublin@alantraynor.com W: www.alantraynor.com

22-059B

MEATH COUNTY COUNCIL

PROPOSED HOUSING DEVELOPMENT AT SWAN LANE, JOHNSTOWN, NAVAN, Co. MEATH

Foul Water, Surface Water, Attenuation Calculations & Details

Table of Contents

 1.1 Site Description 2.0 Surface Water Drainage 2.1 Surface Water Drainage - Existing 2.2 Surface Water Drainage - Proposed 	2
2.0 Surface Water Drainage	2
2.1 Surface Water Drainage - Existing	
	2
2.2 Surface Water Drainage – Proposed	
	2
3.0 Foul Drainage	3
3.1 Foul Drainage – Existing	3
3.2 Foul Drainage – Proposed	3
4.0 Water	3
4.1 Water - Existing	3
4.2 Water - Proposed	3
Appendix A - Surface Water Calculations & Interceptor Details	
Appendix B - Foul Water Calculations	
Appendix C - Irish Water Pre-Connection Application	

1.0 Introduction

Alan Traynor Consulting Engineers Ltd have been engaged by Meath County Council to carry out engineering services design for the proposed 6 unit residential development at Swan Lane, Johnstown, Navan, Co Meath. This report addresses the foul, surface water drainage and water supply for this application.

1.1 Site Description

The site has an area of 0.123 hectares and is located at the junction of Swan Lane and Balreask Old. There are currently 2 no. dwellings (2 semi-detached houses) situated on the site. The site is adjoined by residential dwellings in all directions with buildings of one-two storey height located within the immediate vicinity.

2.0 Surface Water Drainage

2.1 Surface Water Drainage - Existing

The site is circa 0.123 Hectares and currently has sections of hard surface area, made up of the 2 roofed dwellings along with the area to the front of the houses which seems to be mostly macadam surfacing tarmacked. It is unclear where the surface water currently discharges to but there is a public surface water in the road to the front of the properties.

2.2 Surface Water Drainage – Proposed

It is proposed to connect to the existing surface water sewer in Swan Lane. Use cannot be made of soakaways as the size of the individual gardens does not leave adequate space to facilitate the required distances from between soakaways, properties and property boundaries (BRE Digest 365 Design Guidelines). The parking spaces are to be constructed from a permeable material, Grasscrete, to allow surface water from the hard standing surfaces to drain into the stone material beneath and subsequently into the onsite surface water sewer. Two 900mm diameter concrete pipes will act as the attenuation for the site when the flow exceeds the limit of the hydro-brake fitted on the discharge pipe, which is 2l/s. The pipes are sized so as to cater for a 1 in 100-year storm event with an additional 20% allowance for climate change. The surface water will pass through a bypass interceptor prior to being discharged to the public surface water sewer.

3.0 Foul Drainage

3.1 Foul Drainage – Existing

There is an existing 225mm diameter foul sewer running past the front of the site on Swan Lane which the two existing semi-detached houses are connected to.

3.2 Foul Drainage - Proposed

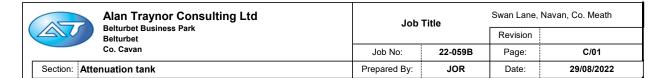
It is proposed to collect the foul water from the six new units using a suitably sized network and discharge into the existing foul network in Swan Lane. A new connection will be made to the existing foul sewer manhole at the junction of Swan Lane and Balreask Old.

4.0 Water

4.1 Water - Existing

There is an existing watermain running along the site boundary in Swan Lane.

4.2 Water - Proposed


It is proposed to make a 100mm & HDPE connection to the existing watermain located in Swan Lane and run a loop in the access road to the development. Connections will then be made to the six units. A fire hydrant and scour valve will also be present in the loop.

Appendix A – Surface Water Calculations & Interceptor Details

Storm sewer loadings for Development at Swan Lane, Navan, Co. Meath

	DATA STORM WATER FLOW Modified Rational Method				Cr = Cv =		SEWER DESIGN Ks = 0.60										
SEWER R	SEWER REFERENCE																
					Cumulative	Rainfall : I	Storm Water Flow	Size of drain	Gradient		Capacity	Pipe full	Actual	Half full	Max Velocity	Depth of	Reserve
From	То	Roads	Roofs/yards	Impervious Area	Impervious Area	(mm/hr)	Q=Ap*I*Cr*Cv*2.78	(mm)	(1 in x)	Length (m)	(l/sec)	Velocity	Velocity	velocity	(m/sec)	flow (mm)	capacity
Manhole	Manhole	Area A1	Area A2				lt/sec	(111111)	(11117)		(1/300)	(m/sec)	(m/sec)	(m/sec)	(111/300)	now (min)	(l/sec)
1	2	3	4	5	6	7	8	9	10	11	12	13	14		15	16	17
S1	S4	0.041	0.025	0.066	0.066	50.00	8.31	225	50	14.855	73.68	1.85	1.24	1.85	2.10	50.98	65.36
S4	Sext	0.000	0.000	0.000	0.066	50.00	2.00	225	200	17.510	36.57	0.92	0.49	0.92	1.04	35.16	34.57

2.00 litres/sec achieved by means of a Hydrobrake

GENERAL DATA	
site location: Ireland	
60 min rainfall depth of 5 year return period 'R' [mm] =	15
M5-60 to M5-2d rainfall ratio 'r' =	0.40
proposed discharge rate 'v ₁ ' [litre/s] =	2.00
proposed discharge rate 'v2' [litre/s] =	2.00
allowance for climate change:	20%

SUMMARY OF CALCULATIONS										
required storage volume for discharge rate 'v ₁ ' =	10.79	m ³								
required storage volume for discharge rate 'v ₂ ' =	16.39	m³								

AREA DATA		impermeability [%]	effective area [m ²]
impermeable area 'A ₁ ' [m²] =	581	100.00	581
landscaping and/or green roof area 'A2' [m²] =	0	25.00	0
other partially permeable area ' A_3 ' [m^2] =	150	50.00	75
AREA DRAINED T	O ATTEN	UATION TANK =	656 m ²

		REQ	UIRED	FOR DISCHARGE RATE V ₁									
rainfall		M5-D		M10-E)	M20-D				M30-E)	outflow from	required
duration [min]	rainfall factor Z1	rainfalls [mm]	Z2	rainfalls [mm]	inflow [m ³]	Z2 rainfalls [mm]	rainfalls [mm]	inflow [m³]	Z2	rainfalls [mm]	inflow [m ³]	attenuation tank [m ³]	storage [m ³]
5	0.37	6.10	1.17	7.00	4.59	1.36	8.40	5.51	1.45	9.30	6.10	0.60	6.60
10	0.52	8.40	1.18	9.70	6.36	1.38	11.70	7.68	1.47	13.00	8.53	1.20	8.79
15	0.63	9.90	1.19	11.40	7.48	1.39	13.80	9.05	1.49	15.30	10.04	1.80	9.88
30	0.80	12.70	1.20	14.40	9.45	1.39	17.30	11.35	1.49	19.20	12.60	3.60	10.79
60	1.00	16.20	1.20	18.30	12.00	1.39	21.80	14.30	1.49	24.00	15.74	7.20	10.25
120	1.21	20.80	1.19	23.20	15.22	1.38	27.40	17.97	1.47	30.00	19.68	14.40	6.34
240	1.45	26.50	1.18	29.40	19.29	1.37	34.40	22.57	1.46	37.60	24.67	28.80	0.00
360	1.60	30.60	1.18	33.80	22.17	1.36	39.40	25.85	1.44	42.90	28.14	43.20	0.00
600	1.79	36.40	1.17	40.00	26.24	1.35	46.40	30.44	1.42	50.70	33.26	72.00	0.00
1440	2.24	39.20	1.17	54.30	35.62	1.34	62.30	40.87	1.42	67.30	44.15	172.80	0.00

^{*} Z2 is a growth factor from M5 rainfalls

		REQ	UIRED	STORAGI	VOLUME	PER F	RAINFALL I	DURATION	FOR	DISCHAR	SE RATE V	2	
rainfall	rainfall	M5-D		M10-E)	M30-D				M100-	D	outflow from	required
duration [min]	ration factor Z1		Z2	rainfalls inflow z2 rainfalls inflow [mm] [m³]		Z2	rainfalls [mm]	inflow [m ³]	attenuation tank [m ³]	storage [m ³]			
5	0.37	6.10	1.17	7.00	4.59	1.45	9.30	6.10	1.88	12.70	8.33	0.60	9.28
10	0.52	8.40	1.18	9.70	6.36	1.47	13.00	8.53	1.93	17.70	11.61	1.20	12.49
15	0.63	9.90	1.19	11.40	7.48	1.49	15.30	10.04	1.97	20.80	13.64	1.80	14.21
30	0.80	12.70	1.20	14.40	9.45	1.49	19.20	12.60	1.98	25.80	16.92	3.60	15.99
60	1.00	16.20	1.20	18.30	12.00	1.49	24.00	15.74	1.97	31.80	20.86	7.20	16.39
120	1.21	20.80	1.19	23.20	15.22	1.47	30.00	19.68	1.92	39.40	25.85	14.40	13.74
240	1.45	26.50	1.18	29.40	19.29	1.46	37.60	24.67	1.88	48.70	31.95	28.80	3.78
360	1.60	30.60	1.18	33.80	22.17	1.44	42.90	28.14	1.85	55.10	36.15	43.20	0.00
600	1.79	36.40	1.17	40.00	26.24	1.42	50.70	33.26	1.80	64.10	42.05	72.00	0.00
1440	2.24	39.20	1.17	54.30	35.62	1.42	67.30	44.15	1.78	84.20	55.24	172.80	0.00

 $^{^{\}star}$ Z2 is a growth factor from M5 rainfalls

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	John	O'Reilly					Site Details					
Site name:	Swar	n Lane					Latitude:	53.63806° N				
Site location:							Longitude:	6.66891° W				
	Nava											
line with Environmen	t Agency	guidance "	'Rainfa ll :	runoff mana	agement for deve	nal best practice criteria in elopments", SC030219 Is for SuDS (Defra, 2015).	Reference:	3775720107				
This information on g surface water runoff			s may be	e the basis t	for setting conse	ents for the drainage of	Date:	Jul 28 2022 09:36				
Runoff estimat	ion app	oroach	IH124									
Site characteri	stics					Notes						
Total site area (ha): 0.12	289				(1) Is Q _{BAR} < 2.0 l	l/s/ha?					
Methodology						(1) 13 GRAH < 2.01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Q _{BAR} estimation r	method:	Calcu	ulate fro	om SPR a	ind SAAR	When Q _{BAR} is < 2	2.0 I/s/ha then I	imiting discharge rates are set				
SPR estimation n	nethod:	Calcı	ulate fro	om SOIL t	ype	at 2.0 l/s/ha.						
Soil characteris	stics	Defau	ılt	Edite	d							
SOIL type:		2		2		(2) Are flow rates < 5.0 l/s?						
HOST class:		N/A		N/A		Mhoro flow rates	oro loop than 5	O.I/a concept for discharge in				
SPR/SPRHOST:		0.3		0.3				.0 I/s consent for discharge is from vegetation and other				
Hydrological cl	naracte	eristics	D€	efault	Edited	'		sent flow rates may be set assed by using appropriate				
SAAR (mm):			860		860	drainage element	_	and by doing appropriate				
Hydrological regio	on:		12		12	(3) Is SPR/SPRH	0 2 2 T 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2					
Growth curve fac	tor 1 ye	ar:	0.85		0.85	(0) 15 35 07 07 07 0	U31 \ U.3!					
Growth curve fac	owth curve factor 1 year: owth curve factor 30 years:				2.13			w enough the use of				
Growth curve fac	rowth curve factor 100 years:				2.61	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.						
Growth curve fac	rowth curve factor 200 years: 2.86											

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.3	0.3
1 in 1 year (l/s):	0.25	0.25
1 in 30 years (l/s):	0.64	0.64
1 in 100 year (l/s):	0.78	0.78
1 in 200 years (l/s):	0.85	0.85

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 288080, Northing: 266177,

	Interval						Years								
DURATION	6months, lyear,	2,	3,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.5, 3.5,	4.0,	4.8,	5.3,	5.7,	7.0,	8.4,	9.3,	10.6,	11.8,	12.7,	14.1,	15.1,	16.0,	N/A ,
10 mins	3.5, 4.9,	5.6,	6.6,	7.3,	7.9,	9.7,	11.7,	13.0,	14.8,	16.5,	17.7,	19.6,	21.1,	22.3,	N/A ,
15 mins	4.1, 5.7,	6.6,	7.8,	8.6,	9.3,	11.4,	13.8,	15.3,	17.5,	19.4,	20.8,	23.1,	24.8,	26.3,	N/A ,
30 mins	5.5, 7.5,	8.5,	10.1,	11.1,	11.9,	14.4,	17.3,	19.2,	21.7,	24.0,	25.8,	28.4,	30.5,	32.2,	N/A ,
1 hours	7.2, 9.7,	11.0,	12.9,	14.2,	15.2,	18.3,	21.8,	24.0,	27.1,	29.8,	31.8,	35.0,	37.4,	39.4,	N/A ,
2 hours	9.5, 12.7,	14.3,	16.7,	18.2,	19.4,	23.2,	27.4,	30.0,	33.7,	36.9,	39.4,	43.1,	45.9,	48.2,	N/A ,
3 hours	11.2, 14.8,	16.6,	19.3,	21.1,	22.4,	26.7,	31.3,	34.3,	38.3,	41.9,	44.6,	48.6,	51.8,	54.3,	N/A ,
4 hours	12.6, 16.5,	18.5,	21.5,	23.4,	24.8,	29.4,	34.4,	37.6,	42.0,	45.8,	48.7,	53.0,	56.3,	59.1,	N/A ,
6 hours	14.9, 19.3,	21.6,	24.9,	27.0,	28.6,	33.8,	39.4,	42.9,	47.7,	51.9,	55.1,	59.9,	63.5,	66.5,	N/A ,
9 hours	17.5, 22.6,	25.1,	28.8,	31.2,	33.1,	38.8,	45.0,	48.9,	54.3,	58.9,	62.4,	67.6,	71.6,	74.9,	N/A ,
12 hours	19.6, 25.2,	28.0,	32.0,	34.6,	36.6,	42.8,	49.5,	53.7,	59.5,	64.4,	68.1,	73.7,	78.0,	81.4,	N/A ,
18 hours	23.1, 29.4,	32.6,	37.1,	40.1,	42.3,	49.2,	56.6,	61.3,	67.6,	73.0,	77.1,	83.3,	87.9,	91.7,	N/A ,
24 hours	26.0, 32.9,	36.3,	41.2,	44.4,	46.8,	54.3,	62.3,	67.3,	74.0,	79.8,	84.2,	90.8,	95.7,	99.7,	113.2,
2 days	32.7, 40.4,	44.2,	49.6,	53.0,	55.6,	63.6,	71.9,	77.1,	84.1,	90.0,	94.4,	101.0,	106.0,	110.0,	123.3,
3 days	38.4, 46.9,	51.0,	56.8,	60.4,	63.2,	71.6,	80.4,	85.8,	93.0,	99.1,	103.7,	110.5,	115.5,	119.6,	133.1,
4 days	43.6, 52.7,	57.1,	63.2,	67.1,	70.0,	78.8,	88.0,	93.6,	101.1,	107.5,	112.2,	119.1,	124.3,	128.4,	142.3,
6 days	53.0, 63.2,	68.0,	74.8,	79.1,	82.2,	91.8,	101.7,	107.7,	115.7,	122.4,	127.4,	134.7,	140.1,	144.5,	158.9,
8 days	61.6, 72.7,	78.0,	85.3,	89.9,	93.3,	103.6,	114.1,	120.5,	128.9,	135.9,	141.1,	148.8,	154.4,	159.0,	173.9,
10 days	69.7, 81.7,	87.3,	95.1,	100.0,	103.6,	114.5,	125.5,	132.2,	141.1,	148.4,	153.8,	161.8,	167.6,	172.3,	187.8,
12 days	77.4, 90.2,	96.2,	104.4,	109.6,	113.4,	124.8,	136.4,	143.4,	152.5,	160.2,	165.8,	174.0,	180.1,	184.9,	200.8,
16 days	92.2, 106.3,	113.0,	122.0,	127.6,	131.8,	144.2,	156.6,	164.2,	174.0,	182.1,	188.1,	196.8,	203.3,	208.4,	225.1,
20 days	106.3, 121.7,	128.8,	138.6,	144.6,	149.1,	162.3,	175.6,	183.6,	194.0,	202.6,	208.9,	218.1,	224.8,	230.2,	247.6,
25 days	123.2, 140.0,	147.8,	158.4,	164.9,	169.7,	183.9,	198.1,	206.6,	217.6,	226.7,	233.4,	243.0,	250.1,	255.7,	274.0,
NOTES:															

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

SEPARATORS

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Separators

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Surface water drains normally discharge to a watercourse or indirectly into underground waters (groundwater) via a soakaway. Contamination of surface water by oil, chemicals or suspended solids can cause these discharges to have a serious impact on the receiving water.

The Environment Regulators, Environment Agency, England and Wales, SEPA, Scottish Environmental Protection Agency in Scotland and Department of Environment & Heritage in Northern Ireland, have published guidance on surface water disposal, which offers a range of means of dealing with pollution both at source and at the point of discharge from site (so called 'end of pipe' treatment). These techniques are known as 'Sustainable Drainage Systems' (SuDS).

Where run-off is draining from relatively low risk areas such as car-parks and non-operational areas, a source control approach, such as permeable surfaces or infiltration trenches, may offer a suitable means of treatment, removing the need for a separator.

Oil separators are installed on surface water drainage systems to protect receiving waters from pollution by oil, which may be present due to minor leaks from vehicles and plant, from accidental spillage.

Effluent from industrial processes and vehicle washing should normally be discharged to the foul sewer (subject to the approval of the sewerage undertaker) for further treatment at a municipal treatment works.

SEPARATOR STANDARDS AND TYPES

A British (and European) standard (EN 858-1 and 858-2) for the design and use of prefabricated oil separators has been adopted. New prefabricated separators should comply with the standard.

SEPARATOR CLASSES

The standard refers to two 'classes' of separator, based on performance under standard test conditions.

CLASS I

Designed to achieve a concentration of less than 5mg/l of oil under standard test conditions, should be used when the separator is required to remove very small oil droplets.

CLASS II

Designed to achieve a concentration of less than 100mg/l oil under standard test conditions and are suitable for dealing with discharges where a lower quality requirement applies (for example where the effluent passes to foul sewer).

Both classes can be produced as full retention separators. The oil concentration limits of 5 mg/l and 100 mg/l are only applicable under standard test conditions. It should not be expected that separators will comply with these limits when operating under field conditions.

FULL RETENTION SEPARATORS

Full retention separators treat the full flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr.

On large sites, some short term flooding may be an acceptable means of limiting the flow rate and hence the size of full retention systems.

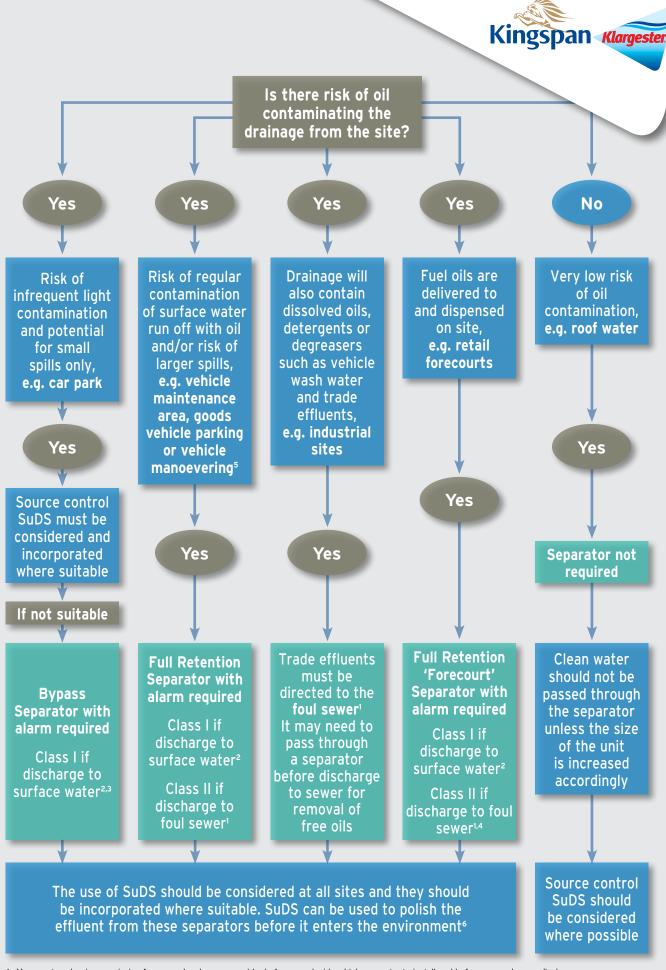
Get in touch for a FREE professional site visit and a representative will contact you within 5 working days to arrange a visit.

helpingyou@klargester.com to make the right decision or call 028 302 66799

BYPASS SEPARATORS

Bypass separators fully treat all flows generated by rainfall rates of up to 6.5mm/hr. This covers over 99% of all rainfall events. Flows above this rate are allowed to bypass the separator. These separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of a large spillage and heavy rainfall occurring at the same time is small.

FORECOURT SEPARATORS


Forecourt separators are full retention separators specified to retain on site the maximum spillage likely to occur on a petrol filling station. They are required for both safety and environmental reasons and will treat spillages occurring during vehicle refuelling and road tanker delivery. The size of the separator is increased in order to retain the possible loss of the contents of one compartment of a road tanker, which may be up to 7,600 litres.

SELECTING THE RIGHT SEPARATOR

The chart on the following page gives guidance to aid selection of the appropriate type of fuel/oil separator for use in surface water drainage systems which discharge into rivers and soakaways.

For further detailed information, please consult the Environment Agency Pollution Prevention Guideline 03 (PPG 3) 'Use and design of oil separators in surface water drainage systems' available from their website

Kingspan Klargester has a specialist team who provide technical assistance in selecting the appropriate separator for your application.

- 1 You must seek prior permission from your local sewer provider before you decide which separator to install and before you make any discharge.
- 2 You must seek prior permission from the relevant environmental body before you decide which separator to install.
- 3 In this case, if it is considered that there is a low risk of pollution a source control SuDS scheme may be appropriate.
- 4 In certain circumstances, the sewer provider may require a Class 1 separator for discharges to sewer to prevent explosive atmospheres from being generated.
- 5 Drainage from higher risk areas such as vehicle maintenance yards and goods vehicle parking areas should be connected to foul sewer in preference to surface water.
- 6 In certain circumstances, a separator may be one of the devices used in the SuDS scheme. Ask us for advice.

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Kingspan Klargester Bypass separators and certified their performance in relation to their flow and process performance assessing the effluent qualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity.
- Oil storage volume.
- Silt storage capacity.
- Coalescer.

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).
- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The drain invert inlet depth.
- Pipework type, size and orientation.

SIZES AND SPECIFICATIONS

UNIT NOMINAL SIZE	FLOW (I/s)	PEAK FLOW RATE (I/s)	DRAINAGE AREA (m²)	STOR CAPACITY SILT		UNIT LENGTH (mm)	UNIT DIA. (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT	STANDARD FALL ACROSS (mm)	MIN. INLET INVERT (mm)	STANDARD PIPEWORK DIA.
NSBP003	3	30	1670	300	45	1700	1350	600	1420	1320	100	500	160
NSBP004	4.5	45	2500	450	60	1700	1350	600	1420	1320	100	500	160
NSBP006	6	60	3335	600	90	1700	1350	600	1420	1320	100	500	160
NSBE010	10	100	5560	1000	150	2069	1220	750	1450	1350	100	700	315
NSBE015	15	150	8335	1500	225	2947	1220	750	1450	1350	100	700	315
NSBE020	20	200	11111	2000	300	3893	1220	750	1450	1350	100	700	375
NSBE025	25	250	13890	2500	375	3575	1420	750	1680	1580	100	700	375
NSBE030	30	300	16670	3000	450	4265	1420	750	1680	1580	100	700	450
NSBE040	40	400	22222	4000	600	3230	1920	600	2185	2035	150	1000	500
NSBE050	50	500	27778	5000	750	3960	1920	600	2185	2035	150	1000	600
NSBE075	75	750	41667	7500	1125	5841	1920	600	2235	2035	200	950	675
NSBE100	100	1000	55556	10000	1500	7661	1920	600	2235	2035	200	950	750
NSBE125	125	1250	69444	12500	1875	9548	1920	600	2235	2035	200	950	750

Rotomoulded chamber construction GRP chamber construction * Some units have more than one access shaft – diameter of largest shown.

Full Retention NSF RANGE

Kingspan Klargester

APPLICATION

Full retention separators are used in high risk spillage areas such as:

- Fuel distribution depots.
- Vehicle workshops.
- Scrap Yards

PERFORMANCE

Kingspan Klargester were the first UK manufacturer to have the required range (3-30 l/sec) certified to EN 858-1 in the UK. The NSF number denotes the flow at which the separator operates.

The British Standards Institute (BSI) have witnessed the performance tests of the required range of separators and have certified their performance, in relation to their flow and process performance to ensure that they met the effluent quality requirements of EN 858-1. Larger separator designs have been determined using the formulas extrapolated from the test range.

Each full retention separator design includes the necessary volume requirements for:

- Oil separation capacity.
- Oil storage volume.
- Silt storage capacity.
- Coalescer (Class I units only).
- Automatic closure device.

Klargester full retention separators treat the whole of the specified flow.

FEATURES

- Light and easy to install.
- Class I and Class II designs.
- 3-30 l/sec range independently tested and performance sampled, certified by the BSI.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.

- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size full retention separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the influent is not pumped.
- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

SIZES AND SPECIFICATIONS

UNIT NOMINAL	FLOW (I/s)	DRAINAGE AREA (m²) PPG-3 (0.018)		CAPACITY res)	UNIT LENGTH (mm)	UNIT DIA. (mm)	BASE TO INLET INVERT	BASE TO OUTLET	MIN. INLET INLET (mm)	STANDARD PIPEWORK
SIZE			SILT	OIL			(mm)	INVERT		DIA. (mm)
NSFP003	3	170	300	30	1700	1350	1420	1345	500	160
NSFP006	6	335	600	60	1700	1350	1420	1345	500	160
NSFA010	10	555	1000	100	2610	1225	1050	1000	500	200
NSFA015	15	835	1500	150	3910	1225	1050	1000	500	200
NSFA020	20	1115	2000	200	3200	2010	1810	1760	1000	315
NSFA030	30	1670	3000	300	3915	2010	1810	1760	1000	315
NSFA040	40	2225	4000	400	4640	2010	1810	1760	1000	315
NSFA050	50	2780	5000	500	5425	2010	1810	1760	1000	315
NSFA065	65	3610	6500	650	6850	2010	1810	1760	1000	315
NSFA080	80	4445	8000	800	5744	2820	2500	2450	1000	300
NSFA100	100	5560	10000	1000	6200	2820	2500	2450	1000	400
NSFA125	125	6945	12500	1250	7365	2820	2500	2450	1000	450
NSFA150	150	8335	15000	1500	8675	2820	2550	2450	1000	525
NSFA175	175	9725	17500	1750	9975	2820	2550	2450	1000	525
NSFA200	200	11110	20000	2000	11280	2820	2550	2450	1000	600

Rotomoulded chamber construction GRP chamber construction

Washdown & Silt

APPLICATION


This unit can be used in areas such as car wash and other cleaning facilities that discharge directly into a foul drain, which feeds to a municipal treatment facility.

If emulsifiers are present the discharge must not be allowed to enter an NS Class I or Class II unit.

- Car wash.
- Tool hire depots.
- Truck cleansing.
- Construction compounds cleansing points.

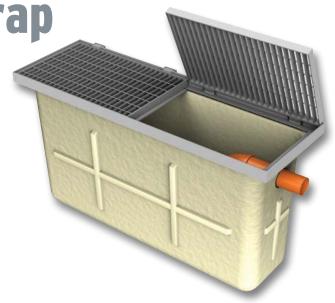
PERFORMANCE

Such wash down facilities must not be allowed to discharge directly into surface water but must be directed to a foul connection leading to a municipal treatment works as they utilise emulsifiers, soaps and detergents, which can dissolve and disperse the oils.

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.

SIZES AND SPECIFICATIONS

REF.	TOTAL CAPACITY (litres)	MAX. REC. SILT	MAX. FLOW RATE (I/s)	LENGTH (mm)	DIAMETER (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT (mm)	STANDARD FALL ACROSS UNIT (mm)	MIN. INLET INVERT (mm)	STANDARD PIPEWORK DIA. (mm)	APPROX EMPTY (kg)
W1/010	1000	500	3	1123	1225	460	1150	1100	50	500	160	60
W1/020	2000	1000	5	2074	1225	460	1150	1100	50	500	160	120
W1/030	3000	1500	8	2952	1225	460	1150	1100	50	500	160	150
W1/040	4000	2000	11	3898	1225	460	1150	1100	50	500	160	180
W1/060	6000	3000	16	4530	1440	600	1360	1310	50	500	160	320
W1/080	8000	4000	22	3200	2020	600	2005	1955	50	500	160	585
W1/100	10000	5000	27	3915	2020	600	2005	1955	50	500	160	680
W1/120	12000	6000	33	4640	2020	600	2005	1955	50	500	160	770
W1/150	15000	7500	41	5435	2075	600	1940	1890	50	500	160	965
W1/190	19000	9500	52	6865	2075	600	1940	1890	50	500	160	1200


Car Wash Silt Trap

APPLICATION

Car Wash silt trap is designed for use before a separator in car wash applications to ensure effective silt removal.

FEATURES

- FACTA Class B covers.
- Light and easy to install.
- Maintenance from ground level.

Forecourt

APPLICATION

The forecourt separator is designed for installation in petrol filling station forecourts and similar applications. The function of the separator is to intercept hydrocarbon pollutants such as petroleum and oil and prevent their entry to the drainage system, thus protecting the environment against hydrocarbon contaminated surface water run-off and gross spillage.

PERFORMANCE

Operation ensures that the flow cannot exit the unit without first passing through the coalescer assembly.

In normal operation, the forecourt separator has sufficient capacity to provide storage for separated pollutants within the main chamber, but is also able to contain up to 7,600 litres of pollutant arising from the spillage of a fuel delivery tanker compartment on the petrol forecourt. The separator has been designed to ensure that oil cannot exit the separator in the event of a major spillage, subsequently the separator should be emptied immediately.

FEATURES

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.

- Oil storage volume.
- Coalescer (Class I unit only).
- Automatic closure device.
- Oil alarm system available.

INSTALLATION

The unit should be installed on a suitable concrete base slab and surrounded with concrete or pea gravel backfill. See sales drawing for installation.

If the separator is to be installed within a trafficked area, then a suitable cover slab must be designed to ensure that loads are not transmitted to the unit.

The separator should be installed and vented in accordance with Health and Safety Guidance Note HS(G)41 for filling stations, subject to Local Authority requirements.

SIZES AND SPECIFICATIONS

ENVIROCEPTOR CLASS	TOTAL CAP. (litres)	DRAINAGE AREA (m²)	MAX. FLOW RATE (I/s)	LENGTH (mm)	DIAMETER (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT (mm)	STD. FALL ACROSS UNIT (mm)	MIN. INLET INVERT (mm)	STD. PIPEWORK (mm)	EMPTY WEIGHT (kg)
1	10000	555	10	3963	1920	600	2110	2060	50	400	160	500
II	10000	555	10	3963	1920	600	2110	2060	50	400	160	500
1	10000	1110	20	3963	1920	600	2110	2060	50	400	200	500
II	10000	1110	20	3963	1920	600	2110	2060	50	400	200	500

Alarm Systems

British European Standard EN 858-1 and Environment Agency Pollution Prevention Guideline PPG3 requires that all separators are to be fitted with an oil level alarm system and that it should be installed and calibrated by a suitably qualified technician so that it will respond to an alarm condition when the separator requires emptying.

- Easily fitted to existing tanks.
- Excellent operational range.
- Visual and audible alarm.
- Additional telemetry option.

PROFESSIONAL INSTALLERS

Kingspan Klargester Accredited Installers
Experience shows that correct installation
is a prerequisite for the long-lasting and
successful operation of any wastewater
treatment product. This is why using an
installer with the experience and expertise
to install your product is highly recommended.

Services include:

- Site survey to establish ground conditions and soil types
- Advice on system design and product selection
- Assistance on gaining environmental consents and building approvals
- Tank and drainage system installation
- Connection to discharge point and electrical networks
- Waste emptying and disposal

Discover more about the Accredited Installers and locate your local expert online.

www.kingspanenviro.com/klargester

CARE & MAINTENANCE

Kingspan Environmental Services
Who better to look after your treatment
plant than the people who designed and
built it?

Kingspan Environmental have a dedicated service division providing maintenance for wastewater products.

Factory trained engineers are available for site visits as part of a planned maintenance contract or on a one-off call out basis.

To find out more about protecting your investment and ensuring peace of mind, call us on:

0844 846 0500

or visit us online: www.kingspanenvservice.com

COMMERCIAL WASTEWATER SOLUTIONS

- BIODISC® & ENVIROSAFE
 HIGH PERFORMANCE SEWAGE TREATMENT SYSTEMS
- PACKAGE PUMP STATIONS
- PUMPSTOR24 PUMPING SYSTEMS
- OIL/WATER SEPARATORS
- BELOW GROUND STORAGE TANKS
- GREASE & SILT TRAPS

RAINWATER SOLUTIONS

- BELOW GROUND RAINWATER HARVESTING SYSTEMS
- ABOVE GROUND RAINWATER HARVESTING SYSTEMS

Klargester

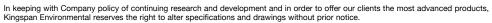
UK: College Road North, Aston Clinton, Aylesbury, Buckinghamshire HP22 5EW
Tel: +44 (0) 1296 633000 Fax: +44 (0) 1296 633001 Scottish Office: Tel: +44 (0) 1355 248484
email: klargester@kingspan.com

Ireland: Unit 1a, Derryboy Road, Carnbane Business Park, Newry, Co. Down BT35 6QH

NI Tel: +44 (0) 28 302 66799 Fax: +44 (0) 28 302 60046 ROI Tel: 048 302 66799 Fax: 048 302 60046

email: klargesterinfo@kingspan.com

Visit our website www.kingspanenviro.com/klargester



Appendix B – Foul Water Calculations

Foul sewer loadings for Development at Swan Lane, Navan, Co. Meath

DATA							SEWER DES Ks =									
SEV REFER	VER RENCE To	HOUSES	UNITS/ HOUSE	UNITS	TOTAL UNITS	TOTAL FLOW	Size of drain (mm)	Gradient (1 in x)	Length (m)	Capacity (l/sec)	Pipe full Velocity (m/sec)	Actual Velocity (m/sec)	Half full velocity (m/sec)	Max Velocity (m/sec)	Depth of flow (mm)	Reserve capacity (l/sec)
Manhole	Manhole	No.	No.	No.	I/s	l/s										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
F1	F2	2	14	28	28	2.997	150	60.0	18.155	20.000	1.132	0.810	1.132	1.291	39.844	17.003
F2	Fext	0	14	0	28	2.997	150	60.0	16.275	20.000	1.132	0.810	1.132	1.291	39.844	17.003

Unit 6 Belturbet Business Park Creeny Belturbet Co. Cavan H14AY93

T: +353 49 9522236 E: info@alantraynor.com W: www.alantraynor.com Bond House 9-10 Lower Bridge St Dublin 8 D08TH76

T: +353 1 9697881 E: dublin@alantraynor.com W: www.alantraynor.com

2.4 m³/day

Foul Discharge Design Calculations

The following calculations are in accordance with Appendix C 'Wastewater Flow Rates for Design' of Irish Water Code of Practice for Wastewater Infrastructure. (IW-CDS_5030-03)

Domestic Dwelling - Flow Rate = 150 litres/occupant/day

Peak Design Flow Rate = 6 x Domestic Flow Rate

Project Name:	Swan Lane, Navan, Co. Meath
Project Number:	22.059B
1 Red Unit - May	2 nersons

1 Bed Unit = Max	2	persons
2 Bed Unit = Max	4	persons
3 Bed Unit = Max	5	persons
4 Bed Unit = Max	6	persons

1 Bed Units =	4	
Flow Rate =	0.0035	l/s per unit
Peak Design Flow Rate =	0.0208	I/s per unit
Total Flow from 4 Units =	0.083	I/s

2 Bed Units =	2	
Flow Rate =	0.0069	l/s per unit
Peak Design Flow Rate =	0.0417	I/s per unit
Total Flow from 2 Units =	0.083	I/s

3 Bed Units =	0	
Flow Rate =	0.0000	I/s per unit
Peak Design Flow Rate =	0.0000	I/s per unit
Total Flow from 0 Units =	0.000	I/s

4 Bed Units =	0	
Flow Rate =	0.0000	l/s per unit
Peak Design Flow Rate =	0.0000	I/s per unit
Total Flow from 0 Units =	0.000	I/s

Total Flow From Development (6 Units)(16 Persons) = 2400 litres or

Peak Design Flow Rate = 0.167 l/s

Average Discharge = 0.0278 l/s

Appendix C – Irish Water Pre-Connection Application

Pre-connection enquiry form

Business developments, mixed use developments, housing developments

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink. Please note that this is a digital PDF form and can be filled in electronically

Please refer to the **Guide to completing the pre-connection enquiry form** on page 14 of this document when completing the form.

* Denotes mandatory/ required field. Please note, if mandatory fields are not completed the application will be returned.

*A _l	ppli	ican	t de	tail	s:																							
Reg	giste	ered	l cor	npa	ny n	am	e (if	арр	olica	ble):																	
Tra	din	g na	me	(if a	ppli	cab	le):																					
Cor	mpa	any	regis	strat	ion	nur	nbe	er (if	арр	olica	ble):																
Par	ent	cor	npai	nv re	egis	tere	ed c	omr	oan\	/ na	me	(if a	ilaaı	cab	le):					!			!		J			
															,													
		+	<u> </u>																					l	I	l		l
				l I				l 1					1													l		
		<u> </u>																							<u></u>			
Par	rent	cor	npai	ny re	egis	trat	ion	nun	nbe	r (if	app	lica	ble)	:]			
		cor are i		-	_										rovi	de t	the a	арр	licar	nt's	nam	ne:]			
		are i		-	_										rovi U	de t	the a	app	l icar	nt's	nam	ne:]			
If y	ou . E	are i	not a	reg	_	erec	l co	mpa	any/	bus	ines		leas	se p						nt's	nam	ne:						
If y M *Co	E onta	are i	not a	a reg	giste	erec C	0	mpa	ny/ N	bus	ines	ss, p	C	se p	U	N				nt's	nam	ne:	L]]		R	
If y M *Co	E onta	A A act r	not a	a reg	giste F B	C I	0 0	mpa U N	N A	bus T	ines Y F	ss, p	C L	se p	U O	N N	С						L	I	N		R	D
If y M *Co *Po	E onta	A A act r	T name	H H SS:	giste	C I	0 0 V	mpa U N	N A N	bus T	y F A	A	C L	se p	U 0 U	N N	С						L	I	N		R	D
If y *Co *Po	E onta osta A	A act ral ad	T name	H H SS:	F B	C I U	0 0 V C	M I O	N A N	T D	Y F A	A	C L	se p	U 0 U	N N	С						L	I	N		R	D
If y *Cc *Pc N *Ei	E Donta	A act ral ad	not a	H H e:	F B , C	C I U	0 0 V C	mpa U N I O	N A N .	T D D	Y F A M	A E	C L H A	o L O T	U 0 U	N N	С						L	I	N		R	D
If y *Cc *Pc N *Ei	ou de E	A A A V de:	not a	H H e:	F B , C	C I U	0 0 V C	mpa U N I O	N A N .	T D D	Y F A M	A E	C L H A	o L O T	U 0 U	N N	С						L	I	N		R	D
If y *Cc *Pc N *Ei	ou de E	A A A V de:	not a	H H e:	F B , C	C I U	0 0 V C	mpa U N I O	N A N .	T D D	Y F A M	A E	C L H A	o L O T	U 0 U	N N	С						L	I	N		R	D
If y *Cc *Pc N *Ei	ou de Econtación	A A act r de de:	not a	H H e:	F B , C	C I U 1 a la	O O C C 5	M I O Y ne c	N A N .	T D 9 mol	Y F A M	A E	C L H A	See p O T T	U 0 U	N N	С						L	I	N		R	D

2	Agent details	(if a	appl	lical	ble)	:																					
	The fields mar	ked	with	h*i	n th	is s	ecti	on a	are i	man	dat	ory	if us	sing	an	age	nt										
	*Contact name	e:	J	0	Н	N		0	1	R	Ε	I	L	L	Y												
	Company nam	e (if	арр	olica	ble):	А	L	А	N		Т	R	А	Y	N	0	R		С	0	N	S		Ε	N	G
	*Postal addres	s:	В	Ε	L	Т	U	R	В	Ε	Т		В	U	S	I	N	Ε	S	S		Р	А	R	K		
	C R E E	N	Y	,		В	Е	L	Т	U	R	В	Е	Т	,		С	0			С	А	V	А	N		
	*Eircode:																										
	Please provide	eitl	ner (a l ai	nd l ii	ne c	or a	mol	bile	nur	nbe	r															
	Land l ine:		0	4	9	9	5	2	2	2	3	6															
	*Mobi l e																										
	*Email:		j	0	h	n	@	а	1	а	n	t	r	a	У	n	0	r		С	0	m					
									•																		
3	*Please indic relation to t	ate	wh	eth	er i	t is	th	e a _l	ppli	can	t or	ag	ent	wh	no s	shou	ıld	rec	eive	e fu	tur	e co	orre	spo	nde	ence	e in
	Applicant (,	mq	un y	•					۸۰۰	ent		`														
	Аррисант 🔾	,								Ag	ent		,														
Sec	ction B Site	de	tai	ls																							
4	*Site address	1 (ir	ıclu	de S	ite	nan	ne/l	3ui l	ding	g na	me	′Bui	ildir	ıg n	um	ber)):										
	S W A N		L	А	N	E																					
	*Address 2																										
	*Address 3																										
	*City/Town	N	A	V	A	N																					
	*County	M	E	А	Т	Н												Ei	irco	de							
				•			•		•	•			•		•	•	•							•			
5	*Irish Grid co	ord	lina	tes	(pr	opo	sed	coı	nne	ctio	n p	oin	t):														
	Eastings (X)	2 8	3 8	3 0) 8	3 (1	Vort	thin	gs (\	<u>(</u> ا	2	6	6 :	1	7	7										
	Note: Values fo	or E	astir	ngs	mus	st b	e be	etwe	en	015,	900	an	d 34	10,00	00.	Nor	thin	gs, l	betv	vee	n 02	29,0	00 a	ind :	362	,000)
	Eg. co-ordinate	2S 0	f GP	0, 0	O'Co	nne	ell S	t., D	ubl	in: I	Ξ(X)	315	,878	3	Ν	(Y) 2	234,	619									
6	*Local Author	i 4 .,,	arb o	WO 10	. ron		اماما	0) (0	loni		+ i-	los:	-	J.													
6	*Local Author	_	wiie		_	ı	ı			nen			ı				Γ_			_		1			1		
	MEAT	Н		С	0	U	N	Т	Y		С	0	U	N	С	I	L										
7	*Uac full plac	nin	a no	~~~	icai	on I	hee	n ~"		·od?)									٧,	·05	_	1			Na	
7	*Has full plan If 'Yes', please							_				nina	ref	erer	nce	nun	nhe	r•		Y	es	<u> </u>	J			No	✓
	ii res, piease	<u>Γ</u>	I	1	cui	1 (1)	T 01	Pic	. v 101	us þ	iaiii	g	, , ,	CIEI	I	I	I	' • 		1	1	ı	I	1			
		1	ı	1	1	ı	l	I	I	I	l	l	I	1	I	I	I	I	l	I	I	I	I	I	1	ı	l

*	Ple	eas	e o	utli								indu	ıstı	ry/l	ousir	ness	us	e pı	ope	oseo	l:							
L	Jor	nes			ty ty	/pe				Nu	ımbo	er of	un	its				Pro	pert	y ty	pe			Νι	ımbe	r of	unit	:s
				Но	use							2				Г		Ap	artr	nent	S					4		
				Dup	olex												Д			er o								
I	nd	ust	ry/	bus	ines	ss:				Nu																		
			Pro	per	ty ty	/pe				Nı	umb	er of	un	its				Pro	per	ty ty	pe			Νι	ımbe	r of	unit	:S
			Ą	gricu	ultura	al											Ві	rewe	ery /	Dist	illery							
	l	Rest	aur	ant	/ Caf	fé /	Pub										Cá	ar W	ash	/ Val	eting							
				Cre	che													Da	ata C	entr	e							
			Fir	e Hy	ydra	nt												Fi	re St	atio	า							
		F	000	d Pro	oces:	sin	g										Hot	el A	ccor	nmo	datio	า						
	In	dus	tria	I / M	anu	fac	turin	g									Laı	undr	y/L	.aun	drette	!						
				Off	ice												Pri	imar	у Са	are C	entre							
	Res	sider	ntial	/ Nur	sing	Car	e Hon	ne											Ret	ai l								
				Sch	ool											Г		Spo	orts	Faci l	ity							
	S	tud	ent	Acco	mmc	ıod	latior	1										W	arel	nous	e							
	Ot	her	(ple	ase	spe	cify	type	<u>;</u>)															No	. of	Units			
	Plea	ise	pro	vid	e ad	dit	iona ts Fa	ıl de acilit	tai l s	if y	our/	pro Cate	pos	sed	busi	ines	s us	se ai	re ir	ı the	· Food	d Pro	ocess	ing,	, Indu	ıstri	al u	nit
F	Mai				\sim \sim \sim	701	(3)		y Oi	0.0	IICI	Cutt	.60	1103	•													

3

9.2	Please provide the maximum expected occupancy in number of peop development you selected, e.g. Number of office workers, number of pub occupancy, number of hotel beds, number of retail workers:																				6									
10	*Ap	pro	oxin	nat	e st	art	dat	e of	pro	po	sed	dev	/elc	pm	ent	•					0	6]/	0	2]/	2	0	2	3
11	*Is	the	de	/elc	pm	ent	: mı	ılti-	pha	sed	l?												١	'es]		Ν	lo	√
	If 'Y	es', a	appl	icat	ion	mus	st in	clud	e a r	nas	ter-	plar	n ide	entif	ying	the	dev	/e l o	pm	ent	oha	ses a	and	the	cur	rent	pha	ise n	um	oer.
					pro em			tails	of v	/ari	atio	ns i	n w	/ate	de	maı	nd v	o l u	mes	s an	d w	aste	ewa	ter (disc	harį	ge lo	oads	du	e to
12	*Plo	eas	e in	dica	ate	the	typ	e o	fcor	nne	ctic	n r	equ	uire	d by	tic	kin	g th	ie a	ppr	opr	iate	e bo	x b	elov	v:				
	Bot	h W	/ate	er a	nd \	Nas	tew	/ate	r (•	Ple	ase	co	mpl	ete l	ooth	n Se	ctio	ns l) ar	nd E									
	Wa	ter	onl	y					(Please go to Section D																				
	Wa	ste	wat	er d	only	•			(\supset	Ple	ase	go	to S	ecti	on I	E													
	Rea	son	for	on	ly ap	ply	ing	for	one	ser	ervice (if applicable):																			
			l		l I	I	l	l	 					1									l	1	<u> </u>	<u> </u>	<u> </u>			
	- 1			ı			1									ı	1								1					

13	*Is there an existing connection to public water	er mains at the site?	Yes	No 🗸
13.1	If yes, is this enquiry for an additional connection	n to one already installed?	Yes	No 🗌
13.2	If yes, is this enquiry to increase the size of an ex	isting connection?	Yes	No 🗌
14	Approximate date water connection is require	d: 0 6	5/02/20	2 3
15	*What diameter of water connection is require	ed to service the developmen	1 0	0 mm
16	*Is more than one connection required to the to service this development?	public infrastructure	Yes	No 🗸
	If 'Yes', how many?			
17	Please indicate the business water demand (s	hops, offices, schools, hotels	;, restaurants, etc.):	
	Post-development peak hour water demand	0.167	l/s	
	Post-development average hour water demand	0.0278	l/s	
	Please include calculations on the attached sheet in the water demand profile, please provide all st		daily/weekly/seasonal	variatior
18	Please indicate the industrial water demand ((industry-specific water requ	irements):	
	Post-development peak hour water demand		l/s	
	Post-development average hour water demand		l/s	
	Please include calculations on the attached sheet in the water demand profile, please provide all st		daily/weekly/seasonal	variatior
19	What is the existing ground level at the prope Head Ordnance Datum?	erty boundary at connection	point (if known) above	e Malin
20	What is the highest finished floor level of the pr	roposed development above N		
21	Is on-site water storage being provided?		Yes	No 🗸
	Please include calculations on the attached sheet	t provided.		

Section D | Water connection and demand details

22	Are there fire flow requirements?		Yes 🚺 No 🗌
	Additional fire flow requirements over and above those identified in Q17-18	8 PER HYD	l/s
	Please include calculations on the attached sheet Fire Authority.	provided, and include confirma	ation of requirements from the
23	Do you propose to supplement your potable wa	ter supply from other sources	? Yes No 🗸
	If 'Yes', please indicate how you propose to supp (see Guide to completing the application form		
Sec	tion E Wastewater connection and di	scharge details	
24	*Is there an existing connection to a public se	ewer at the site?	Yes No 🗸
24.1	If yes, is this enquiry for an additional connection	n to the one already installed?	Yes No No
24.2	If yes, is this enquiry to increase the size of an ex	cisting connection?	Yes No No
25	*Approximate date that wastewater connect	ion is required:	5/02/2023
26	*What diameter of wastewater connection is r	required to service the develo	pment? 1 5 0 mm
27	*Is more than one connection required to the to service this development?	public infrastructure	Yes No No
	If 'Yes', how many?		
28	Please indicate the commercial wastewater hyd	draulic load (shops, offices, sch	ools, hotels, restaurants, etc.):
	Post-development peak discharge	0.167	l/s
	Post-development average discharge	0.0278	l/s
	Please include calculations on the attached shee	t provided.	
29	Please indicate the industrial wastewater hyd	draulic load (industry-specific	discharge requirements):
	Post-development peak discharge		l/s
	Post-development average discharge		l/s
	Please include calculations on the attached shee	t provided.	

6

30	Wastewater	organic	load:
----	------------	---------	-------

С	Characteristic							Max (mg/		icen	trat	tion				eraş ıg/l)		onc	entr	atic	n			day)		dail	у ю	ad	
B d	ioch lema	emica nd (B	al ox OD)	yger	ו																								
((hem COD)	ica l o	xyge	n de	ema	ınd																							
S	uspe	endec	l soli	ds (S	SS)																								
T	ota l ı	nitrog	gen (N)																									
T	ota l ¡	phos	phor	us (l	P)																								
O	ther	r																											
T	emp	erati	ure ı	ang	ge																								
р	H ra	nge																											
	tend	ds dis	scha					r dis	cha	rge	ano	l cor	mm	ont	on =	dec	יבוור	~\/ O	f CI I	DS/	atto		es]	urΔ	c nr		√
int	tend	ds dis	scha					r dis	cha	rge	and	l cor	mm 	ent	on a	dec	quad	су о	f SU	DS/	atte			n me] eas	ure	s pr		√
int	tend		scha					r dis	cha	rge	and	l cor	mm	ent	on a	adeo	quad	су о	f SU	DS/	atte			n me	eas	ure	s pr		√
int	tend		scha					r dis	cha	rge	and	l cor	mm	ent	on a	dec	quad	су о	f SU	DS/	atte			n me	eas	ure	s pr		√
If	'Yes'	, plea	ase (give	rea	asor	n foi															nua	itioi				s pr		√
If	'Yes'	, plea	ase (give	rea	asor	n foi															nua	itioi				s pr		√
If E	'Yes'	, plea	ase (give	rea	asor	n for	atio	ns o	n di	sch	arge										nua	itioi				s pr		ssed.
If I	'Yes'	subnis ap	ase {	give	rea	asor	lcul.	ation	ns o	n di	rate	arge	e vo	lum	es, p	peal	kk flo) wws	and	atte	enua	nua	ntion				s pr	Торо	ssed.
Int If Ple with *D If "	'Yes' ease th th	subnis ap	mit copplic	give	rea illec n to p	asor di cal	n for	ation	ns o	n di	sch /ate	arge	pec vo	lum	es, p	po w	k flo	bws tthis	and	atto	tior	nua patio Y	n vo	blum	nes			No	ssed.
Int If Ple with *D If "	'Yes' ease th th	subinis ap	mit copplic	give	rea illec n to p	asor di cal	n for	ation	ns o	n di	sch /ate	arge	pec vo	lum	es, p	po w	k flo	bws tthis	and	atto	tior	nua patio Y	n vo	blum	nes			No	ssed.
int If Playint *D If " WI He	'Yes'	subnis ap	mit copplic	give	rea nilecon	oum just groum?	n for	ation	ms o	n di	/ate	arge	pec vo	lum I sol	es, pund	poeak	k flo	ows this	and	atto	enua tion	atio	n vo	kno	nes	1) a		No No	ssed.
int If Ple wit *D If WI He	'Yes' ease ease the the the the the the the the the th	subris ap	mit copplic	give deta	rea milecon to p ide	oum just groum?	n for	ation ation	was n fo vel a	n di	/ate	arge	e vo	lum lum	es, putio	poeak dary	k flo	bws this	and	atto	tior n po	atui	es (if	knc	nes	1) a		No No	ssed.

Section F | Supporting documentation

Please provide the following additional information (all mandatory):

>		ocation map: A site location map to a scale of 1:1000, which clearly identifies the land ructure to which the enquiry relates. The map shall include the following details:	
	i.	The scale shall be clearly indicated on the map.	
	ii.	The boundaries shall be delineated in red.	
	iii.	The site co-ordinates shall be marked on the site location map.	
>	Detai	ils of planning and development exemptions (if applicable).	
>	Calcu	lations (calculation sheets provided below).	
>	waste	ayout map to a scale of 1:500 showing layout of proposed development, water network and ewater network layouts, additional water/wastewater infrastructure if proposed, ection points to Irish Water infrastructure.	
>		eptual design of the connection asset from the proposed development to the existing Water infrastructure, including service conflicts, gradients, pipe sizes and invert levels.	
>	Any o	other information that might help Irish Water assess this pre-connection enquiry.	

Section G | Declaration

I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form.

I/We understand that any alterations made to this application must be declared to Irish Water.

The details that I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Any personal data you provide will be stored and processed by Irish Water and may be transferred to third parties for the purposes of the water and/or wastewater connection process. I hereby give consent to Irish Water to store and process my personal data and to transfer my personal data to third parties, if required, for the purposes of the connection process.

If you wish to revoke consent at any time or wish to see Irish Water's full Data Protection Notice, please see https://www.water.ie/privacy-notice/

Signature:

John O'Reilly Digitally signed by John O'Reilly Date: 2022.07.28 16:45:33 +01'00'

Date:

2 8 / 0 7 / 2

0 2

Your full name (in BLOCK CAPITALS):

JOHN O'REILLY

Irish Water will carry out a formal assessment based on the information provided on this form.

Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to **newconnections@water.ie** or alternatively, post to:

Irish Water PO Box 860 South City Delivery Office Cork City